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In this note, we run the ePump updating of PDF and compare with the xFitter

profiling.

I. THE METHODOLOGY OF THE PDF UPDATING

A. The Hessian representations

In the hessian representations, we can construct the dependence of observable X on the
PDF parameters ai with the eigenvector sets in terms of
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where zi = ai − ai,0, and the derivates can be constructed as
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with the step h = 1. The X’s dependence on the SMEFT operators CiOi can be constructed
in a similar way as
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∑
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The existing ePump takes the linear shift as default. We need to enable the quadratic
extension, which is necessary for the SMEFT scenario.

B. The χ2 updating

The ePump (error PDF Updating Method Package) is developed by Carl Schmidt et al.,
for quickly examining the impact of the new data set (or sets) on PDFs [1, 2]. A similar
treatment can be also found in the Hessian profiling [3] implemented in the xFitter package,
inherited from HERAFitter [4].

The basic idea is found a new minimum based on the Hessian approximation of the χ2

along PDF eigen vector, ẑ, illustrated in Fig. 1. The original χ2 along the eigenvector is
assumed to be increased by 100 units, with the form as

χ2
old =

∑
i

T 2
i z

2
i . (4)

With 3 points, we can determine the χ2 for new data with the quadratic assumption as

χ2
new =

∑
α

(Xα({zi})−XE
α )2

σ2
α

, (5)
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FIG. 1. An illustration of the χ2 update in the Hessian profiling.
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X(±zi) X±i X±i
X(±T±i /T ) X±i

TABLE I. Comparison of fixed and dynamical tolerances. We define the average Ti = (T+
i +T−i )/2.

where Xα({zi}) is the theoretical prediction for α-th data, while XE
α is the corresponding

experimental data. Therefore, the new χ2 can be obtained as
χ2

tot = χ2
old + χ2

new. (6)
We find the new minimum at z = z0. Therefore, we obtain the update χ2 for the old and
new data as

∆χ2 = ∆χ2
old + ∆χ2

new, (7)

where ∆χ2
old > 0, ∆χ2

new < 0 and ∆χ2 < 0, shown in Fig. 1.
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II. THE PRACTICAL IMPLEMENTATIONS

A. The D’ Agostini’s Bias and extended t0 method

D’ Agostini realize the dependence of the effect of offset (additive) error and normalization
(multiplicative) error will plays a potential strong role in the χ2 fit for new physics search [9].
In two different normalization treatments,

χ2
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+
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f

,

(8)

χ2
B reproduces the D’ Agostini’s bias. We can match it to the standard χ2 definition in

Eq. (11), by taking
λ = f − 1, σf = 1, ki = Ti, xi = Di. (9)

Therefore, we have
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(10)

where we have assumed λ � 1, such that 1/(1 + λ) ≈ 1 − λ. We see that the nuisance
parameter shifts are normalized to theory λTi or data λDi, which maps to the correlated
uncertainties βi in Eq. (13). In statistics, the χ2

A corresponds to Pearson χ2, while χ2
B is

Neyman’s definition.
NNPDF realized this issue and proposed the t0 method to multiply the normalization

uncertainties σ(L), such as luminosity, with theories in the QCD global analysis [10]. It is
extended to deal with the correlated systematic uncertainties σ(c) as well, and dubbed as
extended t0 method in the 2012 benchmark study [11]. CT10 NNLO analysis has performed
a systematic investigation for different treatments [12].

However, it is still an open question which one will give a better prescription. Usually,
we know that the central values of data point will suffer some random fluctuations, while
theoretical predictions are much stable. Under this scenario, the data fluctuations will
propagate into the nuisance parameter shifts βi, and hence give a larger χ2. This is the
argument for the extended t0 (T (0) in the CTEQ notation) prescription to normalize relative
uncertainty by theory, which gives the smoothest behavior [12].

B. Four error types

The goodness-of-ft can be quantified as the the log-likelihood function

χ2 =

Npt∑
i

1

∆2
i

(
Di − Ti −

Nλ∑
α

λαβi,α

)
+

Nλ∑
α

λ2
α. (11)

The ∆2
k is the quadrature sum of the statistical and the uncorrelated systematical uncertainty

∆2
i = ∆2

i,stat + ∆2
i,unc.sys. (12)

The λα is the nuisance parameter with respect to (w.r.t.) the corresponding correlated
uncertainty βiα. The correlated uncertainties are usually given as a relative percentage w.r.t.
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the central values. We have the freedom to construct the absolute correlated uncertainties
in terms either theoretical predictions or experimental data, as

βi,α =

{
Ti · sys% (ET=1)

Di · sys% (ET=4)
, (13)

which corresponds to the error type ET=1(4) in ePump, respectively. We dub this χ2

definition as the nuisance parameter representation. With the nuisance parameter, we can
construct the covariance matrix uniquely, without any ambiguity, as

covij = δij(∆
stat
i ∆stat

j + ∆unc.sys
i ∆unc.sys

j ) +

Nλ∑
α

βiαβjα, (14)

with the corresponding χ2 calculated as

χ2 =

Npt∑
i,j

(Di − Ti)(cov−1)ij(Dj − Tj). (15)

This representation matches to the error type ET=3 in ePump. In many cases, experimen-
talists provide the correlation matrix, which is to construct the covariance matrix in terms
of

covij = Corrij∆
sys
i ∆sys

j . (16)

In a more general setup, we can have both nuisance parameter and correlation matrix as
inputs

covij = δij∆
stat
i ∆stat

j + Corrij∆
sys
i ∆sys

j +

Nλ∑
α

βiαβjα, (17)

which corresponds to ePump’s error type ET=2.
In summary, we have four options of error types in ePump, implemented in the latest

version v20211102, summarized as:
• Error type=1, nuisance parameter, with relative correlated systematical uncertainty

normalized to theory (NuiT);
• Error type=2, correlation matrix (Corr);
• Error type=3, covariance matrix (Cov);
• Error type=4, nuisance parameter, with relative correlated systematical uncertainty

normalized to data (NuiD).

C. The setup in ePump

We take ID=266, the CMS 7 TeV W → µν asymmetry data [5], as an illustration. We
need three files to run ePump,

• theory table 266CMS7Wmu.theory,
• data table 266CMS7Wmu.data,
• input file 266CMS7Wmu.in.
The input file is to specify setups.

+++ N(EV pairs) N(Data Sets) PDFtype(C/L/N) Dyn_Tol?(Y/N) Tol_squared

29 1 C y 100.0

+++ ObservableFile N(Observables) Data?(Y/N) Error_type Weight PS:

266CMS7Wmu/ID266_ET1 11 Y 1 1.0
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+++ PDFname PDFout

PDFs/CT18NNLO.ev/i2Tn3 266CMS7Wmu/CT18NNLO_ID266_ET1/CT18NNLO_ID266_ET1

The theory table is universal as

Theory Column

5

Data : i2Tn3.00.dta

1.000e-01 8.039e+01 7.000e+03 1.12500e-01 1.12688e-01 2.594e-03

..............

Data : i2Tn3.01.dta

1.000e-01 8.039e+01 7.000e+03 1.12500e-01 1.12237e-01 2.594e-03

We only need to specify the location (column) of the theory predictions for each PDF
error sets.

For ET=1(4), we need the CTEQ-like data table, as

# of corr_err , DataColumn, StatErr, UncSys, corr_err

10 4 5 7 9

The code will firstly read the number of correlated uncertainty, and the specific locations
(column) for data, stat., unc. sys., and corr. sys., which are invoked for initialization. An
dummy line followed by, as for comments. The code will read the data table accordingly.
The code will construct the covariance matrix in terms of Eq. (14). The default βk,α is
normalized with theory.
[Question: Can we add an option to directly read βi,α rather the percentage?
This should correspond to ET=4 case.]

In ET=2 (Corr), we need a similar head file

# of corr_err , Data Column, StatErr, UncSys, corr_err

0 4 5 7 8

Besides, we need the correlation matrix, list as

#a #b CorrCoeff

1 1 1.0

2 1 0.046

.................

We can extract the correlation matrix from Tab. 3 of Ref. [5] or construct the correlation
matrix according to the covariance matrix, provided by HEPData. Then, ePump construct
the covariance matrix according to Eq. (17). In such a way, it can read both correlation
matrix and nuisance parameter (such as luminosity). Note that the ∆sys

i in Eq. (17). is read
as the UncSys column.

In ET=3 (Cov), we need the covariance matrix table as
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Experimental Data Values

0.1125

0.1138

.......

Inverse Covariance Matrix:

a=1,b=1,11

1.4998e+05 -3.6015e+03 ...............

a=2,b=2,11

1.4113e+05 ..............

...............

[Question: Why do we manually construct the inverse of covariance matrix,
rather than directly read them and automatically calculate the inverse within
the code?]

With ET=2, it reads data table with ReadInData2. We have both CTEQ data table
into s sys[k][a] (taking from unc.sys. position), s stat[k][a], and beta[k][a][i],
and correlation matrix into rhocc[k][aa][bb]. It constructs the covariance matrix with
ePump.C:ConstructCm2, as

cov[a][b]=s_sys[k][a]*rhocc[k][a][b]*s_sys[k][b];

cov[a][b]+=beta[k][a][i]*beta[k][b][i] (sum i);

cov[a][b]+=s_stat[k][a]*s_stat[k][a] (a==b);

We have both correlation matrix and the fully correlated uncertainty (nuisance resource).
This is designed to the case in which we both have the correlation matrix and the fully
correlated uncertainties, such as the luminosity (and beam energy) in the LHCb WZ [6] and
the CMS 8 TeV W → µν asymmetry [7]. But in the CMS 7 TeV W asymmetry case [5],
the correlated systematics are included in the correlation matrix already. We should set the
βlumi
i and other correlated uncertainty to be zero.

In default, both the correlation (ET=2) and inverse covariance matrices (ET=3) are read
with upper triangle elements and then symmetrized.

Corrji = Corrij, cov−1
ji = cov−1

ij , (j ≥ i). (18)
[KP: I have modified this part in order to read the elements with j < i as well.
We should be more flexible in this part. The correlation (inverse covariance)
matrix can have two formats, #a #b #CorrCoeff and 2D Npt*Npt array. In the
first format, the code will read the index a and b and fill the corresponding
elements rhocc[k][a][b]. The index a and b should be an integer. We should
enable the conversion from float.]

III. THE Σ +K DECOMPOSITION

We take Alim’s code SigKDCom v1 with the CMS 13 TeV tt̄ data as a demonstration, as
shown in Tab. III.
CMS13tt: Covariance Matrix -> Nuisance Parameter

ATL13tt: Nuisance Parameter -> Covariance Matrix -> Nuisance Parameter

Conclusion for the Σ +K decomposition
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Expt ET1 (NuiT) ET2 (Corr) ET3 (Cov)
CMS7Wmu 7.8799 8.4653 (Mengshi) 8.0483†

CTEQ Corr. from cov. xFitter/Math
7.880358 8.0482 8.04824

ET4(NuiD) Extract from Ref. [5]
7.8854? 7.7179

TABLE II. The ePump χ2 for ID=266, CMS 7 TeV W → µν asymmetry data (Npt = 11) [5].
†This small difference is resulted from the precision losing when Mengshi manually constructs the

inverse of covariance matrix. ?The disagreement between ET4 and ET2/ET3 indicates the slight

inconsistency between the nuisance parameters (read from paper) and covariance matrix (from

HEPData) provided by experimentalist.

ET1 (NuiT) ET2 (Corr) ET3 (Cov) ET4 (NuiD) Marco (ET1) Marco (ET4) Math

mtt̄ 21.7941/21.2780 26.0323/24.8597 26.0322/24.8596 26.0322/24.8596 22.9299/22.3147 25.9680/24.8033 26.0322

ytt̄ 6.3234/5.9249 8.4473/7.7947 8.4473/7.7947 8.4473/7.7947 6.4586/6.0415 8.4469/7.7944 8.44729

yt 6.6442/6.4916 7.6433/7.4427 7.6433/7.4427 7.6433/7.4427 6.8897/6.7305 7.6563/7.4563 7.64331

ptT 18.6091/18.1005 22.6071/21.7422 22.6071/21.7422 22.6071/21.7422 19.3111/18.7462 22.6071/21.7422 22.6071

TABLE III. The ePump old (Constructed by Marco’s Σ+K decomposition) and new (from Alim’s

ET1-4) χ2 for CMS 13 TeV tt̄ data with different error types. The “Math” is the Mathematica χ2

directly calculated with covariance matrix. Theoretical predictions are directly taken from NNLO

version of fastNLO table [8].

• We need to normalize the correlated uncertainty (nuisance parameter) to experimental
data, rather than theory, to match the χ2

cov.
• Pavel introduces an tolerance ε to approximate the covariance matrix as Σ +K, such

that the Lp norm
∑Npt

i,j |covij−(Σ+K)ij|p < ε. As a result, we get a smaller number of
nuisance parameters, as the K matrix rank Nλ ∼ rank(c̃ov) ≤ Npt. Alim’s algorithm
enable that the nuisance parameter number up to data point, Nλ = Npt, independent
of the smallness of the eigenvalues.

• Treating the residuals as uncorrelated uncertainties can approximate the χ2
cov well when

ε is small enough, due to Σ +K ≈ cov. But, treat residuals as correlated uncertainties
exactly reproduce the χ2

cov, as a result of
∑

α βi,αβj,α = covij, independent of the choice
of ε.

IV. WARNING MESSAGE

In code src/ReadIn.C, we have the following functions to deal with 4 different error
types.
case 1: ReadInData1(Datafile,i);

case 2: ReadInData2(Datafile,i);

case 3: ReadInData3(Datafile,i);

case 4: ReadInData1(Datafile,i);

• Trim the starting space characters, as

getline(infile, rawstring);
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ET1 (NuiT) ET2 (Corr) ET3 (Cov) ET4 (NuiD) Default Math

Htt̄
T 19.4566/19.3695 19.5714/19.3867 19.5720/19.3873 19.5720/19.3873 19.5720/19.3873 19.572

mtt̄ 13.1816/13.1534 13.9192/13.7816 13.9191/13.7816 13.9191/13.7816 13.9191/13.8496 13.9191

ytt̄ 12.8164/12.7967 12.7636/12.7357 12.7636/12.7357 12.7636/12.7357 12.7636/12.7357 12.7636

pt1T 13.4658/13.4406 10.4157/10.3651 10.4155/10.3648 10.4155/10.3648 10.4155/10.3648 10.4155

pt2T

TABLE IV. The ePump default (nuisance parameter in ePump and Mathematica) and new (nui-

sance to covariance matrix to decomposition) χ2 for ATLAS 13 TeV tt̄ data with different error

types. The theoretical predictions are taken from APPLgrid together with the NNLO/NLO K-

factor generated with MATRIX.

inputstring=trim(rawstring);

• Do we want to enable new comment lines starting with # character?
Put aside, as some part has adopted # of corr or #a #b to read information.

• Enable to read the lower half of inverse covariance matrix. Not yet.
• Enable to read covariance matrix and construct the inverse by add ConstructCm3(k).

We take a line in data table to specify Inverse to read the default, inverse covariance
matrix. Otherwise, it directly reads covariance matrix and perform the conversion.

* Inverse Covariance Matrix:

Covariance Matrix:

• Similarly, we enable to read correlation matrix in Npt×Npt form. The flag is Matrix

in data table.

* #a #b CorrCoeff

#Correlation Matrix 9X9

• Print out χ2 for all PDF sets.
• Specify the theory file, when many data share the same theoretical predictions.

We take advantage of the last PS option in the data set line of input file.

+++ ObservableFile N(Observables) Data?(Y/N) Error_type Weight PS:TheoryFile

test/ATL13mtt_ET2 9 Y 2 1 test/ATL13mtt
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